Latest Upload :

Challenging Mathematical Problems with Elementary Solutions

Challenging Mathematical Problems with Elementary Solutions






This book is  the  first  of a  two-volume translation  and  adaptation  of
a  well-known  Russian problem  book entitled  Non-Elementary  Problems
in  an Elementary  Exposition. *  The  first  part  of the  original,  Problems on
Combinatorial Analysis  and  Probability  Theory, appears as Volume I,  and
the  second part, Problems  from  Various  Branches  of Mathematics,  as
Volume II.  The  authors,  Akiva  and  Isaak  Yaglom,  are  twin brothers,
prominent  both as mathematicians and  as expositors,  whose  many excel-
lent  books  have been exercising  considerable  influence  on mathematics
education in the  Soviet  Union.
This adaptation  is  designed  for  mathematics enthusiasts  in  the  upper
grades  of high  school  and  the  early  years  of college,  for  mathematics
instructors  or teachers  and  for  students  in teachers'  colleges,  and  for  all
lovers  of the  discipline;  it  can  also  be used in problem  seminars  and
mathematics clubs.  Some  of the  problems in the  book were originally
discussed  in sections  of the  School Mathematics Circle  (for  secondary
school  students)  at Moscow  State  University;  others  were given  at
Moscow  Mathematical  Olympiads,  the  mass problem-solving  contests
held  annually  for  mathematically gifted  secondary  school  students.
The  chief aim  of the  book is  to acquaint  the  reader  with  a  variety
of new  mathematical  facts,  ideas,  and  methods.  The  form  of a  problem
book has  been chosen to stimulate  active,  creative  work on the  materials
presented.
The  first  volume contains  100  problems and  detailed  solutions  to
them.  Although the  problems differ  greatly in formulation and  method
of solution,  they  all deal  with  a  single  branch of mathematics:  combina-
torial  analysis.  While little or no work on this  subject is  done in  American
high  schools,  no  knowledge  of mathematics beyond what is  imparted
in  a  good high  school  course  is  required  for  this  book.  The  authors have
tried  to outline the  elementary  methods  of combinatorial  analysis  with
some  completeness,  however.  Occasionally,  when  needed,  additional
explanation is  given before  the  statement of a  problem.
Thus the  majority of the  problems  in this  book and  in its companion
volume  represent  questions in  higher  (Unon-elementary")  mathematics
that  can  be solved  with  elementary  mathematics.  Most of the  problems
in this  volume are  not  too  difficult and  resemble  problems encountered
in  high school.  The  last  three  sections,  however,  contain  some  very
difficult  problems.  Before  going  on to the  problems, the  reader  should
consult the  uSuggestions  for  Using the  Book."
The  book was  translated  by Professor James  McCawley,  Jr.,  of the
University of Chicago and  edited  and  revised  by Professor  Basil Gordon
of the  University of California at Los  Angeles.
Problem  85  was  sent  by the  Russian authors  for  inclusion  in  the
American edition,  and  appears  here  for  the  first  time.  A  number  of
revisions  have been made by the  editor:
I.  In order  to make volume I  self-contained, some  problems  were
transferred  to volume II.  To replace these,  problems  1,3,12, and
100  were added.  Problem  12,  in  which  the  principle  of inclusion
and  exclusion  is  presented,  is  intended  to unify the  treatment of
several subsequent  problems.
2.  Some  of the  problems  have been restated  in  order to illustrate  the
same  ideas  with  smaller numbers.
3.  The  introductory  remarks  to  section  I,  2,  6,  and  8  have been
rewritten  so  as to  explain certain points  with  which  American
readers might not  be familiar.
4.  Adaptation  of this  book  for  American use  has  involved  these
customary  changes:  References  to  Russian money, sports,  and
so forth have been converted to their American equivalents; some
changes  in  notation  have been made, such as the  introduction  of
the  notation  of set  theory  where  appropriate;  some  comments
dealing with  personalities have been deleted;  and  Russian biblio-
graphical references  have been replaced  by  references  to  books
in English,  whenever possible.
The  editor  wishes  to thank  Professor E. G. Straus  for  his  helpful
suggestions  made during  the  revision  of the  book.  The  Survey wishes  to
express  its  particular gratitude  to  Professor Gordon  for  the  valuable
improvements he has  introduced.


DOWNLOAD

Share this article :

Enregistrer un commentaire

 
Support :